
 Modul 226 Session 5
 HE12 / AP11a

Technische Berufsschule Zürich page 1 of 2 julian.kaeser@tbz.ch
ABTEILUNG INFORMATIONS-TECHNIK 22/9/2012

Processing a Collection

1 Using a Loop

From C we know two types of loops:

-while
-for

These loops also apply in Java and can be used to process a collection. But Java offers
many possibilities to loop through a list of elements.

2 For-each Loop

for (Dog oneDog : myDogs2){
 oneDog.bark();
 }

This basically reads “for each dog in myDogs, do the following”.
It is a very elegant way to process a collection, if you are not addressing a specific element in
the collection.

� This is the standard technique, if all elements of a collection should be
processed.

3 For Loop

This is the “classic” way of dealing with a for-loop. We have seen this style in C as well.
It is used for a primitive array:

for (x=0; x < myDogs.length; x++){
 myDogs[x].bark();
 myDogs[x].tellAge();
}

Or for a collection (here an ArrayList):

for (x=0; x < myDogs2.size(); x++){
 myDogs2.get(x).bark();
 myDogs2.get(x).tellAge();
}

 Modul 226 Session 5
 HE12 / AP11a

Technische Berufsschule Zürich page 2 of 2 julian.kaeser@tbz.ch
ABTEILUNG INFORMATIONS-TECHNIK 22/9/2012

Note how we have to use the methods from a collection to use the index.

� Using an index does not necessarily work with all collection classes!

4 While Loop

int index = 0;
while(index < myDogs2.size()){
 Dog d = myDogs2.get(index);

d.bark();
index++;

}

The while-loop can do the same as the for-each loop, but you are working here with an index.
And you have to do more yourself:

a) You have to assign each element from the list to a variable
b) You have to increment the index (counter).

This loop is more useful if you only want to process a part of a collection.

� But you cannot always use this method for all collections.
For some collections it is either impossible or very inefficient to access individual elements by
using an index.

5 While Loop Using an Iterator

//or with an iterator:
Iterator<Dog> iterate = myDogs2.iterator();
while (iterate.hasNext()){
 Dog doggy = iterate.next();
 doggy.bark();
}

This solution with an Iterator is available for all collections and is an important code pattern
(“Programmier-Muster”).

